

1 | P a g e

MODULE:II

Process scheduling:

• Scheduling is a fundamental function of OS. When a computer is

multiprogrammed, it has multiple processes completing for the CPU

at the same time.

• If only one CPU is available, then a choice has to be made regarding

which process to execute next. This decision making process is

known as scheduling and the part of the OS that makes this choice

is called a scheduler. The algorithm it uses in making this choice is

called scheduling algorithm.

• Scheduling queues: As processes enter the system, they are put

into a job queue. This queue consists of all process in the system.

• The process that are residing in main memory and are ready &

waiting to execute or kept on a list called ready queue.

2 | P a g e

This queue is generally stored as a linked list. A ready queue header

contains pointers to the first & final PCB in the list. The PCB includes a

pointer field that points to the next PCB in the ready queue. The lists of

processes waiting for a particular I/O device are kept on a list called device

queue. Each device has its own device queue. A new process is initially put

in the ready queue. It waits in the ready queue until it is selected for

execution & is given the CPU.

3 | P a g e

SCHEDULERS:

• A process migrates between the various scheduling queues

throughout its life-time purposes. The OS must select for scheduling

processes from these queues in some fashion.

• This selection process is carried out by the appropriate scheduler. In

a batch system, more processes are submittedand then executed

immediately. So these processes are spooled to a mass storage device

like disk, where they are kept for later execution.

Types of schedulers:

There are 3 types of schedulers mainly used:

1. Long term scheduler: Long term scheduler selects

process from the disk & loads them into memory for execution.

It controls the degreeof multi-programming i.e. no. of processes in

memory.

It executes less frequently than other schedulers. If the degree of

multiprogramming is stable than the average rate of process creation

is equal to the average departure rate of processes leaving the system.

So, the long term scheduler is needed to be invoked only when a

process leaves the system.

Due to longer intervals between executions it can afford to take more

time to decide which process should be selected for execution. Most

processes in the CPU are either I/O bound or CPU bound. An I/O

4 | P a g e

bound process (an interactive ‘C’ program is one that spends most

of its time in I/O operation than it spends in doing I/O operation.

A CPU bound process is one that spends more of its time in doing

computations than I/O operations (complex sorting program).

It is important that the long term scheduler should select a good mix

of I/O bound & CPU bound processes.

2. Short - term scheduler: The short term scheduler selects

among the process that are ready to execute & allocates the CPU to

one of them.

The primary distinction between these two schedulers is the

frequency of their execution. The short-term scheduler must select a

new process for the CPU quite frequently.

It must execute at least one in 100ms. Due to the short duration of

time between executions, it must be very fast.

3. Medium - term scheduler: some operating systems introduce

an additional intermediate level of scheduling known as medium -

term scheduler.

The main idea behind this scheduler is that sometimes it is

advantageous to remove processes from memory & thus reduce the

degree of multiprogramming.

At some later time, the process can be reintroduced into memory &

its execution can be continued from where it had left off.

5 | P a g e

This is called as swapping. The process is swapped out & swapped

in later by medium term scheduler. Swapping is necessary to improve

theprocess miss or due to some change in memory requirements, the

available memory limit is exceeded which requires some memory to

be freed up.

CPU Scheduling Algorithm:

CPU Scheduling deals with the problem of deciding which of the

processes in the ready queue is to be allocated first to the CPU. There are

four types of CPU scheduling that exist.

1. First Come, First Served Scheduling (FCFS) Algorithm:This is the

simplest CPU scheduling algorithm. In this scheme, the process which

requests the CPU first, that is allocated to the CPU first.

The implementation of the FCFS algorithm is easily managed with a

FIFO queue.

6 | P a g e

When a process enters the ready queue its PCB is linked onto the rear

of the queue. The average waiting time under FCFS policy is quiet long.

Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Using FCFS algorithm find the average waiting time and average

turnaround time if the order is

P1, P2, P3, P4.

Solution: If the process arrived in the order P1, P2, P3, P4 then

according to the FCFS the Gantt chart will be:

P1 P2 P3 P4

0 3 8 10 14

The waiting time for process P1 = 0, P2 = 3, P3 = 8, P4 = 10 then the

turnaround time for process P1 = 0 + 3 = 3, P2 = 3 + 5 = 8, P3 = 8 +

2 = 10, P4 = 10 + 4 =14.

7 | P a g e

Then average waiting time = (0 + 3 + 8 + 10)/4 = 21/4 = 5.25

Average turnaround time = (3 + 8 + 10 + 14)/4 = 35/4 = 8.75

The FCFS algorithm is non preemptive means once the CPU has been

allocated to a process then the process keeps the CPU until the release

the CPU either by terminating or requesting I/O.

2. Shortest Job First Scheduling (SJF) Algorithm: This algorithm

associates with each process if the CPU is available.

This scheduling is also known as shortest next CPU burst, because the

scheduling is done by examining the length of the next CPU burst of

the process rather than its total length. Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Solution:According to the SJF the Gantt chart will be

P3 P1 P2 P4

0 2 5 9 14

8 | P a g e

The waiting time for process P1 = 0, P2 = 2, P3 = 5, P4 = 9 then the

turnaround time for process P3 = 0 + 2 = 2, P1 = 2 + 3 = 5, P4 = 5 +

4 = 9, P2 = 9 + 5 =14.

Then average waiting time = (0 + 2 + 5 + 9)/4 = 16/4 = 4

Average turnaround time = (2 + 5 + 9 + 14)/4 = 30/4 = 7.5

The SJF algorithm may be either preemptive or non preemptive

algorithm. The preemptive SJF is also known as shortest remaining

time first.

Consider the following example.

Process Arrival Time CPU time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

In this case the Gantt chart will be

P1 P2 P4 P1 P3

0 1 5 10 17 26

The waiting time for process

P1 = 10 - 1 = 9

P2 = 1 – 1 = 0

9 | P a g e

P3 = 17 – 2 = 15

P4 = 5 – 3 = 2

The average waiting time = (9 + 0 + 15 + 2)/4 = 26/4 = 6.5

3. Priority Scheduling Algorithm: In this scheduling a priority is

associated with each process and the CPU is allocated to the process

with the highest priority.

Equal priority processes are scheduled in FCFS manner. Consider the

following example:

Process Arrival

Time

CPU

time

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2

According to the priority scheduling the Gantt chart will be

P2 P5 P1 P3 P4

0 1 6 16 18 19

The waiting time for process

P1 = 6

P2 = 0

10 | P a g e

P3 = 16

P4 = 18

P4 = 1

The average waiting time = (0 + 1 + 6 + 16 + 18)/5 = 41/5 = 8.2

4. Round Robin Scheduling Algorithm: This type of algorithm is

designed only for the time sharing system.

It is similar to FCFS scheduling with preemption condition to switch

between processes.

A small unit of time called quantum time or time slice is used to switch

between the processes.

The average waiting time under the round robin policy is quiet long.

Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Time Slice = 1

millisecond.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P4 P2 P4 P2

11 | P a g e

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14

The waiting time for process

P1 = 0 + (4 – 1) + (8 – 5) = 0 + 3 + 3 = 6

P2 = 1 + (5 – 2) + (9 – 6) + (11 – 10) + (12 – 11) + (13 – 12) = 1 + 3

+ 3 + 1 + 1 + 1 = 10

P3 = 2 + (6 – 3) = 2 + 3 = 5

P4 = 3 + (7 – 4) + (10 – 8) + (12 – 11) = 3 + 3 + 2 + 1 = 9

The average waiting time = (6 + 10 + 5 +

9)/4 = 7.5

Process co_ordination:

Process coordination or concurrency control deals with mutual

exclusion and synchronization Mutual exclusion-ensure that two

concurrent activities do not access shared data (resource) at the same

time, critical region-set of instructions that only one process can

execute.

Synchronization-asing a condition so coordinate the actions of

concurrent activities. A generalization of mutual exclusion.

12 | P a g e

When considering process coordination, we must keep in mind

the following situations:

• Deadlock occurs when two activities are waiting each other and

neither can proceed. For example.

Suppose processes A and B each need two tape drives to continue, but

only one drive has been assigned to each of them. If the system has

only 2 drives, neither process can ever proceed.

• Survation occurs when a blocked activity is consistently passed

over and not allowed to run. For

example Consider two CPU bound jobs, one running at a higher

priority than the other.

The lower priority process will never be allowed to execute. As we

shall see, some synchronization primitives lead to starvation.

Process Synchronization:

A co-operation process is one that can affect or be affected by other

processes executing in the system.

Co-operating process may either directly share a logical address space or

be allotted to the shared data only through files.

This concurrent access is known as Process synchronization.

Critical Section Problem:

Consider a system consisting of n processes (P0, P1, ………Pn -1) each

process has a segment of code which is known as critical section in which

13 | P a g e

the process may be changing common variable, updating a table, writing

a file and so on.

The important feature of the system is that when the process is

executing in its critical section no other process is to be allowed to

execute in its critical section.

The execution of critical sections by the processes is a mutually

exclusive.

The critical section problem is to design a protocol that the process can

use to cooperate each process must request permission to enter its critical

section.

The section of code implementing this request is the entry section. The

critical section is followed on exit section. The remaining code is the

remainder section.

Example:

While (1)

{

Entry Section;

Critical Section;

Exit Section;

Remainder Section;

}

14 | P a g e

A solution to the critical section problem must satisfy the following three

conditions.

1. Mutual Exclusion: If process Pi is executing in its critical section

then no any other process can be executing in their critical section.

2. Progress: If no process is executing in its critical section and some

process wish to enter their critical sections then only those process

that are not executing in their remainder section can enter its

critical section next.

3. Bounded waiting: There exists a bound on the number of times

that other processes are allowed to enter their critical sections after

a process has made a request.

Semaphores:

For the solution to the critical section problem one synchronization tool

is used which is known as semaphores.

A semaphore ‘S’ is an integer variable which is accessed through two

standard operations such as wait and signal.

These operations were originally termed ‘P’ (for wait means to test) and

‘V’ (for single means to increment). The classical definition of wait is

Wait (S)

{

While (S <= 0)

{

15 | P a g e

Test;

}

S--;

}

The classical definition of the signal is

Signal (S)

{

S++;

}

In case of wait the test condition is executed with interruption and the

decrement is executed without interruption.

Binary Semaphore:

A binary semaphore is a semaphore with an integer value which

can range between 0 and 1. Let ‘S’ be a counting semaphore.

To implement the binary semaphore we need following the

structure of data. Binary Semaphores S1, S2; int C;

Initially S1 = 1, S2 = 0 and the value of C is set to the initial value of the

counting semaphore ‘S’.

Then the wait operation of the binary semaphore can be implemented as

follows.

16 | P a g e

Wait

(S1) C-

-; if (C

< 0)

{

Signal (S1);

Wait (S2);

}

Signal (S1);

The signal operation of the binary semaphore can be implemented as

follows:

Wait (S1);

C++;

if (C <=0)

Signal (S2);

Else

Signal (S1);

17 | P a g e

Classical Problem on Synchronization:

There are various types of problem which are proposed for

synchronization scheme such as

• Bounded Buffer Problem: This problem was commonly used to

illustrate the power of synchronization primitives.

In this scheme we assumed that the pool consists of ‘N’ buffer and

each capable of holding one item. The ‘mutex’ semaphore provides

mutual exclusion for access to the buffer pool and is initialized to

the value one.

The empty and full semaphores count the number of empty and full

buffer respectively. The semaphore empty is initialized to ‘N’ and

the semaphore full is initialized to zero. This problem is known as

procedure and consumer problem.

The code of the producer is producing full buffer and the code of

consumer is producing empty buffer. The structure of producer

process is as follows:

do { produce an

item in nextp

.

Wait (empty);

Wait (mutex);

.

18 | P a g e

add nextp to buffer

.

Signal (mutex);

Signal (full);

} While (1);

The structure of consumer process is as follows:

do {

Wait (full);

Wait

(mutex);

.

Remove an item from buffer to nextc

.

Signal (mutex);

Signal (empty);

.

Consume the item in nextc;

.

} While (1);

19 | P a g e

• Reader Writer Problem: In this type of problem there are two

types of process are used such as Reader process and Writer

process.

The reader process is responsible for only reading and the writer

process is responsible for writing.

This is an important problem of synchronization which has several

variations like o The simplest one is referred as first reader writer

problem which requires that no reader will be kept waiting unless a

writer has obtained permission to use the shared object.

In other words no reader should wait for other reader to finish

because a writer is waiting. o The second reader writer problem

requires that once a writer is ready then the writer performs its

write operation as soon as possible.

The structure of a reader process is as follows:

Wait (mutex);

Read

count++; if

(read count

== 1)

Wait (wrt);

Signal

(mutex);

.

20 | P a g e

Reading is performed

.

Wait (mutex);

Read count --;

if (read count

== 0)

Signal (wrt);

Signal (mutex);

The structure of the writer process is as follows:

Wait (wrt);

Writing is performed;

Signal (wrt);

• Dining Philosopher Problem: Consider 5 philosophers to spend

their lives in thinking & eating.

A philosopher shares common circular table surrounded by 5 chairs

each occupies by one philosopher. In the center of the table there

is a bowl of rice and the table is laid with 6 chopsticks as shown in

below figure.

21 | P a g e

When a philosopher thinks she does not interact with her

colleagues. From time to time a philosopher gets hungry and tries

to pickup two chopsticks that are closest to her.

A philosopher may pickup one chopstick or two chopsticks at a

time but she cannot pickup a chopstick that is already in hand of

the neighbor.

When a hungry philosopher has both her chopsticks at the same

time, she eats without releasing her chopsticks. When she finished

eating, she puts down both of her chopsticks and starts thinking

again.

This problem is considered as classic synchronization problem.

According to this problem each chopstick is represented by a

semaphore.

A philosopher grabs the chopsticks by executing the wait

operation on that semaphore.

22 | P a g e

She releases the chopsticks by executing the signal operation on

the appropriate semaphore. The structure of dining philosopher is

as follows:

do{

Wait (chopstick

[i]); Wait (chopstick

[(i+1)%5]);

.

Eat

.

Signal (chopstick [i]);

Signal (chopstick

[(i+1)%5]);

.

Think

.

} While (1);

Critical

section:

According to the critical section problem using semaphore all processes

must share a semaphore variablemutex which is initialized to one. Each

23 | P a g e

process must execute wait (mutex) before entering the critical section and

execute the signal (mutex) after completing the execution but there are

various difficulties may arise with this approach like:

Case 1: Suppose that a process interchanges the order in which the wait

and signal operations on the semaphore mutex are executed, resulting in

the following execution:

Signal (mutex);

.

Critical Section

.

Wait (mutex);

In this situation several processes may be executing in their critical

sections simultaneously, which is violating mutual exclusion requirement.

Case 2: Suppose that a process replaces the signal (mutex) with wait

(mutex). The execution is as follows: Wait (mutex);

.

Critical Section

.

Wait (mutex);

In this situation a deadlock will occur

24 | P a g e

Case 3: Suppose that a process omits the wait (mutex) and the signal

(mutex). In this case the mutual exclusion is violated or a deadlock will

occur.

To illustrate the various types or error generated by using semaphore

there are some high level language constructs have been introduced such

as critical region and monitor.

Critical region is also known as conditional critical regions. It

constructs guards against certain simple errors associated with

semaphore.

This high level language synchronization construct requires a variable

V of type T which is to be shared among many processes. It is

declared as V: shared T;

The variable V can be accessed only inside a region statement as like

below:

Wait (mutex);

While (! B) {

First_count++

; if

(second_count

> 0)

Signal (second_delay);

25 | P a g e

Else

Signal (mutex);

Wait (first_delay);

First_count--;

Second_count++;

if (first_count> 0)

Signal (first_delay);

Else

Signal (second_delay);

Wait (second_delay);

Second_count --;

}

S;

if (first_count> 0)

Signal (first_delay);

Else if (second_count> 0)

Signal (second_delay);

Else

Signal (mutex);

26 | P a g e

(Implementation of the conditional region constructs)

Where B is a Boolean variable which governs the access to the critical

regions which is initialized to false.Mutex, First_delay and Second_delay

are the semaphores which are initialized to 1, 0, and 0 respectively.

First_count and Second_count are the integer variables which are

initialized to zero.

Monitor:

It is characterized as a set of programmer defined operators.

Its representation consists of declaring of variables, whose value defines

the state of an instance. The syntax of monitor is as follows. Monitor

monitor_name

{

Shared variable declarations

Procedure body P1 (………) {

.

}

Procedure body P2

(………) {

}

.

.

27 | P a g e

.

Procedure body Pn

(………) {

}

{

Initialization Code

}

}

Atomic Transaction:

This section is related to the field of database system.

Atomic transaction describes the various techniques of database and

how they are can be used by the operating system.

It ensures that the critical sections are executed automatically. To

determine how the system should ensure atomicity we need first to

identify the properties of the devices used to for storing the data accessed

by the transactions. The various types storing devices are as follows:

• Volatile Storage: Information residing in volatile storage does not

survive in case of system crash. Example of volatile storage is main

memory and cache memory.

• Non volatile Storage: Information residing in this type of storage

usually survives in case of system crash.

28 | P a g e

• Examples are Magnetic Disk, Magnetic Tape and Hard Disk.

• Stable Storage: Information residing in stable storage is never

lost. Example is non volatile cache memory.

The various techniques used for ensuring the atomicity are as follows:

1. Log based Recovery: This technique is used for achieving the

atomicity by using data structure called log. A log has the following

fields:

a. Transaction Name: This is the unique name of the

transaction that performed the write operation.

b. Data Item Name: This is the unique name given to the data.

c. Old Value: This is the value of the data before to the write

operation.

d. New value: This is the value of the data after the write

operation.

This recovery technique uses two processes such as Undo and Redo.

Undo restores the value of old data updated by a transaction to the

old values.

Redo sets the value of the data updated by a transaction to the new

values.

2. Checkpoint: In this principle system maintains the log. The

checkpoint requires the following sequences of action.

29 | P a g e

a. Output all the log records from volatile storage into stable

storage.

b. Output all modified data residing in volatile to the stable

storage.

c. Output a checkpoint onto the stable storage.

T0 T1

Read

(A)

Write

(A)

Read

(B)

Write (B)

transaction Read

system Write (A)

and Read (B) their

(B)

(A)

read

Write

serially in some arbitrary order.

Consider a consisting two data

items A and B which are both

written by two transactions T0 and

T1. Suppose that transactions are

3. Serializibility: In this

technique the executed

executed automatically in the order

30 | P a g e

T0 followed by T 1. This execution sequence is known as schedule which

is represented as below.

If transactions are overlapped then their execution resulting schedule

is known as non-serial scheduling or concurrent schedule as like

below:

T0 T1

Read

(A)

Write

(A)

Read

(A)

Write

(A)

Read

(B)

Write

(B)

Read

(B)

Write

(B)

4. Locking: This technique governs how the locks are acquired and

released.

There are two types of lock such as shared lock and exclusive lock. If

a transaction T has obtained a shared lock (S) on data item Q then T

31 | P a g e

can read this item but cannot write. If a transaction T has obtained an

exclusive lock (S) on data item Q then T can both read and write in

the data item Q.

5. Timestamp: In this technique each transaction in the system is

associated with unique fixed timestamp denoted by TS. This

timestamp is assigned by the system before the transaction starts.

If a transaction Ti has been assigned with a timestamp TS (Ti) and

later a new transaction Tj enters the system then TS (Ti) < TS (Tj).

There are two types of timestamp such as Wtimestamp and R-

timestamp.

W-timestamp denotes the largest timestamp of any transaction that

performed write operation successfully.

R-timestamp denotes the largest timestamp of any transaction that

executed read operation successfully.

Deadlock:

In a multiprogramming environment several processes may compete for

a finite number of resources.

A process request resources; if the resource is available at that time a

process enters the wait state.

Waiting process may never change its state because the resources

requested are held by other waiting process. This situation is known as

deadlock.

32 | P a g e

Example

• System has 2 disk drives.

• P1 and P2 each hold one disk drive and each needs another one.

• 2 train approaches each other at crossing, both will come to full

stop and neither shall start until other has gone.

• Traffic only in one direction.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback).

• Several cars may have to be backed up if a deadlock occurs.

• Starvation is possible System Model:

33 | P a g e

A system consists of a finite number of resources to be distributed

among a number of competing processes.

The resources are partitioned into several types each of which consists

of a number of identical instances. A process may utilized a resources in

the following sequence

• Request: In this state one can request a resource.

• Use: In this state the process operates on the resource.

• Release: In this state the process releases the resources.

Deadlock Characteristics: In a deadlock process never finish

executing and system resources are tied up.

A deadlock situation can arise if the following four conditions hold

simultaneously in a system.

• Mutual Exclusion: At a time only one process can use the

resources. If another process requests that resource, requesting

process must wait until the resource has been released.

• Hold and wait: A process must be holding at least one resource

and waiting to additional resource that is currently held by other

processes.

• No Preemption: Resources allocated to a process can’t be

forcibly taken out from it unless it releases that resource after

completing the task.

• Circular Wait: A set {P0, P1, …….Pn} of waiting state/ process

must exists such that P0 is waiting for a resource that is held by P1,

P1 is waiting for the resource that is held by P2 ….. P(n – 1) is waiting

34 | P a g e

for the resource that is held by Pn and Pn is waiting for the

resources that is held by P4.

Resource Allocation Graph:

Deadlock can be described more clearly by directed graph which is

called system resource allocation graph.

The graph consists of a set of vertices ‘V’ and a set of edges ‘E’. The set

of vertices ‘V’ is partitioned into two different types of nodes such as P

= {P1, P2, …….Pn}, the set of all the active processes in the system and

R = {R1, R2, …….Rm}, the set of all the resource type in the system. A

directed edge from process Pi to resource type Rj is denoted by Pi → Rj.

It signifies that process Pi is an instance of resource type Rj and waits for

that resource.

A directed edge from resource type Rj to the process Pi which signifies

that an instance of resource type Rj has been allocated to process Pi. A

directed edge Pi → Rj is called as request edge and Rj → Pi is called as

assigned edge.

• Process

• Resource Type with 4 instances

35 | P a g e

• Pirequests instance of

Rj

• Pi is holding an

instance of Rj

When a process Pi requests an instance of resource type Rj then a

request edge is inserted as resource allocation graph.

When this request can be fulfilled, the request edge is transformed to an

assignment edge.

When the process no longer needs access to the resource it releases the

resource and as a result the assignment edge is deleted.

The resource allocation graph shown in below figure has the following

situation.

• The sets P, R, E

P = {P1, P2, P3}

R = {R1, R2, R3, R4}

E = {P1 → R1,P2 → R3,R1 → P2,R2 → P2,R2 → P1,R3 → P3}

P
i

P
i

36 | P a g e

The resource instances

are Resource R1 has

one instance

Resource R2 has two instances.

Resource R3 has one instance

Resource R4 has three instances.

The process states are:

Process P1 is holding an instance of R2 and waiting for an instance

of R1.

Process P2 is holding an instance of R1 and R2 and waiting for an

instance R3.

Process P3 is holding an instance of R3.

The following example shows the resource allocation graph with a

deadlock.

37 | P a g e

P1 -> R1 -> P2 -> R3 -> P3 -> R2 -> P1

P2 -> R3 -> P3 -> R2 -> P1

The following example shows the resource allocation graph with a cycle

but no deadlock.

P1 -> R1 -> P3 -> R2 -> P1

No deadlock

P4 may release its instance of resource R2

Methods for Handling Deadlocks

The problem of deadlock can deal with the following 3 ways.

38 | P a g e

We can use a protocol to prevent or avoid deadlock ensuring that the

system will never enter to a deadlock state.

We can allow the system to enter a deadlock state, detect it and

recover.

We can ignore the problem all together.

To ensure that deadlock never occur the system can use either a

deadlock prevention or deadlock avoidance scheme. Deadlock

Prevention:

Deadlock prevention is a set of methods for ensuring that at least one of

these necessary conditions cannot hold.

Mutual Exclusion: The mutual exclusion condition holds for non

sharable. The example is a printer cannot be simultaneously shared

by several processes.

Sharable resources do not require mutual exclusive access and thus

cannot be involved in a dead lock.

The example is read only files which are in sharing condition. If

several processes attempt to open the read only file at the same time

they can be guaranteed simultaneous access.

Hold and wait:To ensure that the hold and wait condition never

occurs in the system, we must guaranty that whenever a process

requests a resource it does not hold any other resources.

There are two protocols to handle these problems such as one

protocol that can be used requires each process to request and be

allocated all its resources before it begins execution.

39 | P a g e

The other protocol allows a process to request resources only when

the process has no resource.

These protocols have two main disadvantages. First, resource

utilization may be low, since many of the resources may be allocated

but unused for a long period. Second, starvation is possible.

A process that needs several popular resources may have to wait

indefinitely, because at least one of the resources that it needs is

always allocated to some other process.

No Preemption: To ensure that this condition does not hold, a

protocol is used. If a process is holding some resources and request

another resource that cannot be immediately allocated to it.

The preempted one added to a list of resources for which the process

is waiting. The process will restart only when it can regain its old

resources, as well as the new ones that it is requesting. Alternatively

if a process requests some resources, we first check whether they are

available. If they are, we allocate them. If they are not available, we

check whether they are allocated to some other process that is

waiting for additional resources. If so, we preempt the desired

resources from the waiting process and allocate them to the

requesting process.

If the resources are not either available or held by a waiting process,

the requesting process must wait.

Circular Wait:We can ensure that this condition never holds by

ordering of all resource type and to require that each process

requests resource in an increasing order of enumeration. Let R

40 | P a g e

= {R1, R2, …….Rn}be the set of resource types. We assign to each

resource type a unique integer number, which allows us to compare

two resources and to determine whether one precedes another in

our ordering. Formally, we define a one to one function F: R → N,

where N is the set of natural numbers.

For example, if the set of resource types R includes tape drives, disk

drives and printers, then the function F might be defined as follows:

F (Tape Drive) = 1,

F (Disk Drive)

= 5, F

(Printer) = 12.

We can now consider the following protocol to prevent deadlocks:

Each process can request resources only in an increasing order of

enumeration.

That is, a process can initially request any number of instances of a

resource type, say Ri. After that, the process can request instances of

resource type Rj if and only if F (Rj) > F (Ri).

If several instances of the same resource type are needed, defined

previously, a process that wants to use the tape drive and printer at

the same time must first request the tape drive and then request the

printer.

Deadlock Avoidance

Requires additional information about how resources are to be

used.Simplest and most useful model requires that each process declare

the maximum number of resources of each type that it may need.The

41 | P a g e

deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that there can never be a circular-wait

condition.Resource-allocation state is defined by the number of available

and allocated resources, and the maximum demands of the processes.

Safe State

When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state.Systems are in safe

state if there exists a safe sequence of all process.

A sequence <P1, P2, …, Pn> of ALL the processes is the system such

that for each Pi, the resources that Pi can still request can be satisfied by

currently available resources + resources held by all the Pj, withj <i.That

is:

• If Pi resource needs are not immediately available, then Pi can wait

until all Pjhave finished.

• When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.

• When Pi terminates, Pi +1 can obtain its needed resources, and so on.

• If system is in safe state => No deadlock

• If system in not in safe state => possibility of deadlock

• OS cannot prevent processes from requesting resources in a

sequence that leads to deadlock

• Avoidance => ensue that system will never enter an unsafe state,

prevent getting into deadlock

42 | P a g e

Example:

• Suppose processes P0, P1, and P2 share 12 magnetic tape drives •

Currently 9 drives are held among the processes and 3 are available

• Question: Is this system currently in a safe state?

• Answer: Yes!

o Safe Sequence: <P1, P0, P2>

• Suppose process P2 requests and is allocated 1 more tape drive.

• Question: Is the resulting state still safe?

• Answer: No! Because there does not exist a safe sequence anymore.

Only P1 can be allocated its maximum needs.

IFP0 and P2 request 5 more drives and 6 more drives,

respectively, then the resulting state will be deadlocked.

43 | P a g e

Resource Allocation Graph Algorithm

In this graph a new type of edge has been introduced is known as claim

edge. Claim edge Pi→Rj indicates that process Pj may request resource Rj;

represented by a dashed line.Claim edge converts to request edge when a

process requests a resource.Request edge converted to an assignment

edge when the resource is allocated to the process.When a resource is

released by a process, assignment edge reconverts to a claim

edge.Resources must be claimed a priori in the system.

P2 requesting R1, but R1 is already allocated to P1.

Both processes have a claim on resource R2

What happens if P2 now requests resource R2?

Cannot allocate resource R2 to process P2

44 | P a g e

Why? Because resulting state is unsafe

• P1 could request R2, thereby creating deadlock!

Use only when there is a single instance of each resource type

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request edge to

an assignment edge does not result in the formation of a cycle in

the resource allocation graph.

• Here we check for safety by using cycle-detection algorithm.

Banker’s Algorithm

This algorithm can be used in banking system to ensure that the bank

never allocates all its available cash such that it can no longer satisfy the

needs of all its customer.

This algorithm is applicable to a system with multiple instances of each

resource type.

When a new process enter in to the system it must declare the

maximum number of instances of each resource type that it may need.

This number may not exceed the total number of resources in the

system.

Several data structure must be maintained to implement the banker’s

algorithm. Let,

• n = number of processes

• m = number of resources types

Available: Vector of length m. If Available[j] = k, there are k

instances of resource type Rjavailable.

45 | P a g e

Max: n x m matrix. If Max [i,j] = k, then process Pimay request at

most k instances of resource type Rj.

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more

instances of Rjto complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm

1. Let Workand Finish be vectors of length m and n, respectively.

Initialize: Work = Available

Finish [i] = false for i = 0, 1, …,n- 1.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi≤Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi Finish[i] = true

go to step 2.

4. If Finish [i] == true for all i, then the system

is in a safe state.

Resource Allocation Algorithm

Request = request vector for process Pi. If Requesti[j] = k then process

Pi wants k instances of resource type Rj.

46 | P a g e

1. If Requesti≤Needigo to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim.

2. If Requesti≤Available, go to step 3. Otherwise Pi must wait, since

resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as

follows:

Available = Available – Request;

Allocationi= Allocationi + Requesti;

Needi=Needi – Requesti;

• If safe ⇒ the resources are allocated to Pi.

• If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

Example

• 5 processes P0 through P4;

• 3 resource types:

A (10 instances), B (5instances), and C (7 instances).

• Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

47 | P a g e

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

• The content of the matrix Need is defined to be Max – Allocation.

 Need

 A B

C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence <P1, P3, P4, P2, P0>

satisfies safety criteria.

P1 requests (1, 0, 2)

• Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true.

Allocation Need Available

 A B C A B C A B

C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

48 | P a g e

• Executing safety algorithm shows that sequence <P1, P3, P4, P0,

P2> satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted? –NO

• Can request for (0,2,0) by P0 be granted? –NO (Results Unsafe)

Deadlock Detection

If a system doesn’t employ either a deadlock prevention or deadlock

avoidance, then deadlock situation may occur. In this environment the

system must provide

• An algorithm to recover from the deadlock.

• An algorithm to remove the deadlock is applied either to a system

which pertains single in instance each resource type or a system

which pertains several instances of a resource type.

Single Instance of each Resource type

If all resources only a single instance then we can define a deadlock

detection algorithm which uses a new form of resource allocation graph

called “Wait for graph”.

We obtain this graph from the resource allocation graph by removing

the nodes of type resource and collapsing the appropriate edges.

The below figure describes the resource allocation graph and

corresponding wait for graph.

49 | P a g e

Resource-Allocation Correspondin

Graph wait-for graph

• For single instance

• Pi ->Pj(Pi is waiting for Pj to release a resource that Pi needs)

• Pi->Pj exist if and only if RAG contains 2 edges Pi ->Rq and Rq -

>Pj for some resource Rq Several Instances of a Resource type

The wait for graph scheme is not applicable to a resource allocation

system with multiple instances of reach resource type.

For this case the algorithm employs several data structures which are

similar to those used in the banker’s algorithm like available, allocation

and request.

• Available: A vector of length m indicates the number of available

resources of each type.

• Allocation: An n x m matrix defines the number of resources of

each type currently allocated to each process.

50 | P a g e

• Request: An n x m matrix indicates the current request of each

process. If Request [ij] = k, then process Pi is requesting k more

instances of resource type. Rj.

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi≠ 0, then Finish[i] =

false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti≤Work

If no such i exists, go to step 4.

3. Work = Work + Allocation

Finish [i] = true

Go to step 2

4. If Finish [i] = false, for some i, 1≤ i≤ n, then the system is in a

deadlock state. Moreover, if Finish [i] = false, then process P i is

deadlocked.

51 | P a g e

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several

alternatives exist. One possibility is to inform the operator that a

deadlock has occurred, and to let the operator deal with the deadlock

manually.

The other possibility is to let the system recover from the deadlock

automatically. There are two options for breaking a deadlock. One

solution is simply to abort one or more processes to break the circular

wait.

The second option is to preempt some resources from one or more of

the deadlocked processes.

Process Termination:

To eliminate deadlocks by aborting a process, we use one of two

methods. In both methods, the system reclaims all resources allocated to

the terminated processes.

• Abort all deadlocked processes: This method clearly will break

the deadlock cycle, but at a great expense; these processes may

have computed for a long time, and the results of these partial

computations must be discarded and probably recomputed later.

• Abort one process at a time until the deadlock cycle is

eliminated:This method incurs considerable overhead, since after

each process is aborted, a deadlock detection algorithm must be

invoked to determine whether any processes are still deadlocked.

52 | P a g e

Resource Preemption:

To eliminate deadlocks using resource preemption, we successively

preempt some resources from processes and give these resources to

other processes until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need

to be addressed.

• Selecting a victim: Which resources and which processes are to

be preempted? As in process termination, we must determine the

order of preemption to minimize cost.

• Cost factors may include such parameters as the numbers of

resources a deadlock process is holding, and the amount of time a

deadlocked process has thus far consumed during its execution.

• Rollback: If we preempt a resource from a process, what should

be done with that process? Clearly, it cannot continue with its

normal execution; it is missing some needed resource. We must

rollback the process to some safe state, and restart it from that

state.

• Starvation: In a system where victim selection is based primarily

on cost factors, it may happen that the same process is always

picked as a victim. As a result, this process never completes its

designated task, a starvation situation that needs to be dealt with in

any practical system. Clearly, we must ensure that a process can be

picked as a victim only a small finite number of times. The most

common solution is to include the number of rollbacks in the cost

factor.

53 | P a g e

1 | P a g e

MODULE:III

Memory Management

• Memory consists of a large array of words or bytes, each with its own address.

The CPU fetches instructions from memory according to the value of the

program counter. These instructions may cause additional loading from and

storing to specific memory addresses.

• Memory unit sees only a stream of memory addresses. It does not know how

they are generated.

• Program must be brought into memory and placed within a process for it to be

run.

• Input queue – collection of processes on the disk that are waiting to be brought

into memory for execution.

• User programs go through several steps before being run.

Address binding of instructions and data to memory addresses can happen at three

different stages.

2 | P a g e

• Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes.

Example: .COM-format programs in MS-DOS.

• Load time: Must generate relocatable code if memory location is not known at

compile time.

• Execution time: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another. Need hardware

support for address maps

• (e.g., relocation registers).

Logical Versus Physical Address Space

• The concept of a logical address space that is bound to a separate

physicaladdress space is central to proper memory management.

o Logical address – address generated by the CPU; also referred to as

virtual address. o Physical address – address seen by the memory unit.

• The set of all logical addresses generated by a program is a logical address

space; the set of all physical addresses corresponding to these logical addresses

are a physical address space.

• Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme.

• The run-time mapping from virtual to physical addresses is done by a hardware

device called the memory management unit (MMU).

3 | P a g e

• This method requires hardware support slightly different from the hardware

configuration. The base register is now called a relocation register. The value in

the relocation register is added to every address generated by a user process at

the time it is sent to memory.

• The user program never sees the real physical addresses. The program can

create a pointer to location 346, store it in memory, manipulate it and compare

it to other addresses. The user program deals with logical addresses. The

memory mapping hardware converts logical addresses into physical addresses.

The final location of a referenced memory address is not determined until the

reference is made.

Dynamic Loading

• Routine is not loaded until it is called.

• All routines are kept on disk in a relocatable load format.

• The main program is loaded into memory and is executed. When a routine

needs to call another routine, the calling routine first checks to see whether the

other the desired routine into memory and to update the program’s address

tables to reflect this change. Then control is passed to the newly loaded routine.

• Better memory-space utilization; unused routine is never loaded.

• Useful when large amounts of code are needed to handle infrequently occurring

cases.

4 | P a g e

• No special support from the operating system is required.

• Implemented through program design.

• Dynamic Linking

• Linking is postponed until execution time.

• Small piece of code, stub, is used to locate the appropriate memory-resident

library routine, or to load the library if the routine is not already present.

• When this stub is executed, it checks to see whether the needed routine is

already in memory. If not, the program loads the routine into memory.

• Stub replaces itself with the address of the routine, and executes the routine.

• Thus the next time that code segment is reached, the library routine is executed

directly, incurring no cost for dynamic linking.

• Operating system is needed to check if routine is in processes’ memory address.

• Dynamic linking is particularly useful for libraries.

Swapping

• A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution. For example, assume

a multiprogramming environment with a round robin CPU scheduling

algorithm. When a quantum expires, the memory manager will start to swap out

the process that just finished, and to swap in another process to the memory

space that has been freed. In the mean time, the CPU scheduler will allocate a

time slice to some other process in memory. When each process finished its

quantum, it will be swapped with another process. Ideally, the memory manager

can swap processes fast enough that some processes will be in memory, ready

to execute, when the CPU scheduler wants to reschedule the CPU. The

quantum must also be sufficiently large that reasonable amounts of computing

are done between swaps.

5 | P a g e

• Roll out, roll in – swapping variant used for priority-based scheduling

algorithms. If a higher priority process arrives and wants service, the memory

manager can swap out the lower priority process so that it can load and execute

lower priority process can be swapped back in and continued. This variant is

some times called roll out, roll in. Normally a process that is swapped out will

be swapped back into the same memory space that it occupied previously. This

restriction is dictated by the process cannot be moved to different locations. If

execution time binding is being used, then a process can be swapped into a

different memory space, because the physical addresses are computed during

execution time.

• Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images. It

must be large enough to accommodate copies of all memory images for all

users, and it must provide direct access to these memory images. The system

maintains a ready queue consisting of all processes whose memory images are

scheduler decides to execute a process it calls the dispatcher. The dispatcher

checks to see whether the next process in the queue is in memory. If not, and

there is no free memory region, the dispatcher swaps out a process currently in

memory and swaps in the desired process. It then reloads registers as normal

and transfers control to the selected process.

• Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped.

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux,

and Windows).

6 | P a g e

Contiguous Memory Allocation

• Main memory is usually divided into two partitions:

o Resident operating system, usually held in low memory with interrupt

vector.

o User processes, held in high memory.

• In contiguous memory allocation, each process is contained in a single

contiguous section of memory.

• Single-partition allocation o Relocation-register scheme used to protect user

processes from each other, and from changing operating-system code and data.

o Relocation register contains value of smallest physical address; limit

register contains range of logical addresses – each logical address must be

less than the limit register.

• Multiple-partition allocation o Hole – block of available memory; holes of

various size are scattered throughout memory.

7 | P a g e

o When a process arrives, it is allocated memory from a hole large enough

to accommodate it. o Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

o A set of holes of various sizes, is scattered throughout memory at any

given time. When a process arrives and needs memory, the system

searches this set for a hole that is large enough for this process. If the

hole is too large, it is split into two: one part is allocated to the arriving

process; the other is returned to the set of holes. When a process

terminates, it releases its block of memory, which is then placed back in

the set of holes. If the new hold is adjacent to other holes, these adjacent

holes are merged to form one larger hole.

o This procedure is a particular instance of the general dynamic storage

allocation problem, which is how to satisfy a request of size n from a list

of free holes. There are many solutions to this problem. The set of holes

is searched to determine which hole is best to allocate. The first-fit, best-

fit and worst-fit strategies are the most common ones used to select a

free hole from the set of available holes.

o First-fit: Allocate the first hole that is big enough.

o Best-fit: Allocate the smallest hole that is big enough; must search entire

list, unless ordered by size.

o Worst-fit: Allocate the largest hole; must also search entire list.

8 | P a g e

Fragmentation

• External Fragmentation – total memory space exists to satisfy a request, but

it is not contiguous.

• Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition, but not

being used.

• Reduce external fragmentation by compaction o Shuffle memory contents to

place all free memory together in one large block.

Non contiguous allocation

In non-contiguous allocation, the Operating system needs to maintain the table which

is called the Page Table for each process which contains the base address of each

block that is acquired by the process in memory space. In non-contiguous memory

allocation, different parts of a process are allocated to different places in Main

Memory. Spanning is allowed which is not possible in other techniques like Dynamic

or Static Contiguous memory allocation. That’s why paging is needed to ensure

effective memory allocation. Paging is done to remove External Fragmentation.

There are five types of Non-Contiguous Allocation of Memory in the Operating

System:

1. Paging

2. Multilevel Paging

3. Inverted Paging

4. Segmentation

5. Segmented Paging

Paging

• Paging is a memory management scheme that permits the physical address

space of a process to be non contiguous.

• Divide physical memory into fixed-sized blocks called frames (size is power of

2, for example 512 bytes).

9 | P a g e

• Divide logical memory into blocks of same size called pages. When a process is

to be executed, its pages are loaded into any available memory frames from the

backing store. The backing store is divided into fixed sized blocks that are of

the same size as the memory frames.

• The hardware support for paging is illustrated in below figure.

• Every address generated by the CPU is divided into two parts: a page number

(p) and a page offset (d). The page number is used as an index into a page table.

The page table contains the base address of each page in physical memory. This

base address is combined with the page offset to define the physical memory

address that is sent to the memory unit.

• The paging model of memory is shown in below figure. The page size is

defined by the hardware. The size of a page is typically of a power of 2, varying

between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation

of a logical address into a page number and page offset particularly easy. If the

size of logical address is 2m, and a page size is 2n addressing units, then the high

order m-n bits of a logical address designate the page number, and the n low

order bits designate the page offset.

10 | P a g e

• Keep track of all free frames.

• To run a program of size n pages, need to find n free frames and load program.

• Set up a page table to translate logical to physical addresses.

• Internal fragmentation may occur.

Let us take an example. Suppose a program needs 32 KB memory for allocation.

The whole program is divided into smaller units assuming 4 KB and is assigned

some address. The address consists of two parts such as:

• A large number in higher order positions and

• Displacement or offset in the lower order bits.

The numbers allocated to pages are typically in power of 2 to simplify extraction of

page numbers and offsets. To access a piece of data at a given address, the system

first extracts the page number and the offset. Then it translates the page number to

physical page frame and access data at offset in physical page frame. At this

moment, the translation of the address by the OS is done using a page table. Page

table is a linear array indexed by virtual page number which provides the physical

page frame that contains the particular page. It employs a lookup process that

extracts the page number and the offset. The system in addition checks that the

page number is within the address space of process and retrieves the page number

in the page table. Physical address will calculated by using the formula.

Physical address = page size of logical memory X frame number + offset

11 | P a g e

When a process arrives in the system to be executed, its size expressed in pages is

examined. Each page of the process needs one frame. Thus if the process requires

n pages, at least n frames must be available in memory. If n frames are available,

they are allocated to this arriving process. The first page of the process is loaded

into one of the allocated frames, and the frame number is put in the page table for

this process. The next page is loaded into another frame, and its frame number is

put into the page table and so on as in below figure. An important aspect of paging

is the clear separation between the user’s view of memory and the actual physical

memory. The user program views that memory as one single contiguous space,

containing only this one program. In fact, the user program is scattered throughout

physical memory, which also holds other programs. The difference between the

user’s view of memory and the actual physical memory is reconciled by the

address-translation hardware. The logical addresses are translated into physical

addresses. This mapping is hidden from the user and is controlled by the operating

system.

12 | P a g e

Implementation of Page Table

• Page table is kept in main memory.

• Page-tablebase register (PTBR) points to the page table.

• In this scheme every data/instruction-byte access requires two memory

accesses. One for the page-table entry and one for the byte.

• The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative registers or associative memory or

translation look-aside buffers(TLBs).

• Typically, the number of entries in a TLB is between 32 and 1024.

• The TLB contains only a few of the page table entries. When a logical address is

generated by the CPU, its page number is presented to the TLB. If the page

number is found, its frame number is immediately available and is used to

13 | P a g e

access memory. The whole task may take less than 10 percent longer than it

would if an unmapped memory reference were used.

• If the page number is not in the TLB (known as a TLB miss), a memory

reference to the page table must be made. When the frame number is obtained,

we can use it to access memory. Hit Ratio

• Hit Ratio: the percentage of times that a page number is found in the

associative registers.

• For example, if it takes 20 nanoseconds to search the associative memory and

100 nanoseconds to access memory; for a 98-percent hit ratio, we have

Effective memory-access time = 0.98 x 120 +

0.02 x 220 = 122

nanoseconds.

• The Intel 80486 CPU has 32 associative registers, and claims a 98-percent hit

ratio.

Valid or invalid bit in a page table

• Memory protection implemented by associating protection bit with each frame.

• Valid-invalid bit attached to each entry in the page table:

o “Valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal

page.

o “Invalid” indicates that the page is not in the

process’ logical address space.

• Pay attention to the following figure. The program extends to only address

10,468, any reference beyond that address is illegal. However, references to

page 5 are classified as valid, so accesses to addresses up to 12,287 are valid.

This reflects the internal fragmentation of paging.

14 | P a g e

Structure of the Page Table

Hierarchical Paging:

• A logical address (on 32-bit machine with 4K page size) is divided into:

o A page number consisting of 20 bits. o A page

offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:

o A 10-bit page number. o A 10-bit page offset.

• Thus, a logical address is as follows:

Where p1 is an index into the outer page table, and p2 is the displacement within

the page of the outer page table.The below figure shows a two level page table

scheme.

15 | P a g e

Address-translation scheme for a two-level 32-bit paging architecture is shown in below figure.

Hashed Page Table:

A common approach for handling address spaces larger than 32 bits is to use a

hashed page table, with the hash value being the virtual page number. Each entry

in the hash table contains a linked list of elements that has to the same location.

Each element consists of three fields: (a) the virtual page number, (b) the value of

the mapped page frame, and (c) a pointer to the next element in the linked list. The

algorithm works as follows: The virtual page number in the virtual address is

hashed into the hash table. The virtual page number is compared to field (a) in the

first element in the linked list. If there is a match, the corresponding page frame

(field (b)) is used to form the desired physical address. If there is no match,

subsequent entries in the linked list are searched for a matching virtual page

number. The scheme is shown in below figure.

16 | P a g e

Inverted Page Table:

• One entry for each real page (frame) of memory.

• Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page.

• There is only one page table in the system. Not per process.

• Decreases memory needed to store each page table, but increases time needed

to search the table when a page reference occurs.

• Use hash table to limit the search to one — or at most a few — page-table

entries.

Each virtual address in the system consists of a triple <process-id, page-number,

offset>. Each inverted page table entry is a pair <process-id, page-number> where

the process-id assumes the role of the address space identifier. When a memory

reference occurs, part of the virtual address, consisting of <process-id, page-

number>, is presented to the memory subsystem. The inverted page table is then

searched for a match. If a match is found say at entry i, then the physical address

17 | P a g e

<i, offset> is generated. If no match is found, then an illegal address access has

been attempted.

Shared Page:

• Shared code

o One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems).

o Shared code must appear in same location in the logical address space of

all processes.

• Private code and data o Each process keeps a separate copy of the code and

data. o The pages for the private code and data can appear anywhere in the

logical address space.

Reentrant code or pure code is non self modifying code. If the code is reentrant,

then it never changes during execution. Thus, two or more processes can execute

the same code at the same time. Each process has its own copy of registers and

data storage to hold the data for the process’ execution. The data for two different

processes will of course vary for each process.

Segmentation

• Memory-management scheme that supports user view of memory.

• A program is a collection of segments. A segment is a logical unit such as:

Main program,

18 | P a g e

Procedure,

Function,

Method,

Object,

Local variables, global variables,

Common block,

Stack,

Symbol table, arrays

• Segmentation is a memory management scheme that supports this user view of

memory.

• A logical address space is a collection of segments. Each segment has a name

and a length.

• The addresses specify both the segment name and the offset within the

segment.

• The user therefore specifies each address by two quantities such as segment

name and an offset. For simplicity of implementation, segments are numbered

and are referred to by a segment number, rather than by a segment name.

• Logical address consists of a two tuples:

<segment-number, offset>

19 | P a g e

• Segment table – maps two-dimensional physical addresses; each table entry has:

o Base – contains the starting physical address where the segments reside

in memory.

o Limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the segment table’s location in

memory.

• Segment-table length register (STLR) indicates number of segments used by a

program; Segment number s is legal if s< STLR.

• When the user program is compiled by the compiler it constructs the segments.

• The loader takes all the segments and assigned the segment numbers.

• The mapping between the logical and physical address using the segmentation

technique is shown in above figure.

• Each entry in the segment table as limit and base address.

• The base address contains the starting physical address of a segment where the

limit address specifies the length of the segment.

• The logical address consists of 2 parts such as segment number and offset.

• The segment number is used as an index into the segment table. Consider the

below example is given below.

20 | P a g e

Segmentation with Paging

• Both paging and segmentation have advantages and disadvantages, that’s why

we can combine these two methods to improve this technique for memory

allocation.

• These combinations are best illustrated by architecture of Intel-386.

• The IBM OS/2 is an operating system of the Intel-386 architecture. In this

technique both segment table and page table is required.

• The program consists of various segments given by the segment table where the

segment table contains different entries one for each segment.

• Then each segment is divided into a number of pages of equal size whose

information is maintained in a separate page table.

• If a process has four segments that is 0 to 3 then there will be 4 page tables for

that process, one for each segment.

• The size fixed in segmentation table (SMT) gives the total number of pages and

therefore maximum page number in that segment with starting from 0.

• If the page table or page map table for a segment has entries for page 0 to 5.

• The address of the entry in the PMT for the desired page p in a given segment s

can be obtained by B + P where B can be obtained from the entry in the

segmentation table.

21 | P a g e

• Using the address (B +P) as an index in page map table (page table), the page

frame (f) can be obtained and physical address can be obtained by adding offset

to page frame.

Virtual Memory

• It is a technique which allows execution of process that may not be compiled

within the primary memory.

• It separates the user logical memory from the physical memory. This separation

allows an extremely large memory to be provided for program when only a

small physical memory is available.

• Virtual memory makes the task of programming much easier because the

programmer no longer needs to working about the amount of the physical

memory is available or not.

• The virtual memory allows files and memory to be shared by different

processes by page sharing.

• It is most commonly implemented by demand paging.

22 | P a g e

Demand Paging

A demand paging system is similar to the paging system with swapping feature.

When we want to execute a process we swap it into the memory. A swapper

manipulates entire process where as a pager is concerned with the individual pages

of a process. The demand paging concept is using pager rather than swapper.

When a process is to be swapped in, the pager guesses which pages will be used

before the process is swapped out again. Instead of swapping in a whole process,

the pager brings only those necessary pages into memory. The transfer of a paged

memory to contiguous disk space is shown in below figure.

Thus it avoids reading into memory pages that will not used any way decreasing the

swap time and the amount of physical memory needed. In this technique we need

some hardware support to distinct between the pages that are in memory and

those that are on the disk. A valid and invalid bit is used for this purpose. When

this bit is set to valid it indicates that the associate page is in memory. If the bit is

23 | P a g e

set to invalid it indicates that the page is either not valid or is valid but currently

not in the disk.

Marking a page invalid will have no effect if the process never attempts to access

that page. So while a process executes and access pages that are memory resident,

execution proceeds normally. Access to a page marked invalid causes a page fault

trap. It is the result of the OS’s failure to bring the desired page into memory.

Procedure to handle page fault

If a process refers to a page that is not in physical memory then

• We check an internal table (page table) for this process to determine whether

the reference was valid or invalid.

• If the reference was invalid, we terminate the process, if it was valid but not yet

brought in, we have to bring that from main memory.

• Now we find a free frame in memory.

• Then we read the desired page into the newly allocated frame.

• When the disk read is complete, we modify the internal table to indicate that

the page is now in memory.

• We restart the instruction that was interrupted by the illegal address trap. Now

the process can access the page as if it had always been in memory.

24 | P a g e

Page Replacement

• Each process is allocated frames (memory) which hold the process’s pages

(data)

• Frames are filled with pages as needed – this is called demand paging

• Over-allocation of memory is prevented by modifying the page-fault service

routine to replace pages

• The job of the page replacement algorithm is to decide which page gets

victimized to make room for a new page

• Page replacement completes separation of logical and physical memory

Page Replacement Algorithm

Optimal algorithm

• Ideally we want to select an algorithm with the lowest page-fault rate

• Such an algorithm exists, and is called (unsurprisingly) the optimal algorithm:

• Procedure: replace the page that will not be used for the longest time (or at all)

– i.e. replace the page with the greatest forward distance in the reference string

• Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page

referenced

1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting

page

1 1 1 1 1 1 1 1 1 1 4 4

 2 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 3 3 3 3 3 3

 4 4 4 5 5 5 5 5 5

• Analysis: 12 page references, 6 page faults, 2 page replacements. Page faults

per number of frames = 6/4 = 1.5

25 | P a g e

• Unfortunately, the optimal algorithm requires special hardware (crystal ball,

magic mirror, etc.) not typically found on today’s computers

• Optimal algorithm is still used as a metric for judging other page replacement

algorithms

FIFO algorithm

• Replaces pages based on their order of arrival: oldest page is replaced

• Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page

referenced

1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting

page

1 1 1 1 1 1 5 5 5 5 4 4

 2 2 2 2 2 2 1 1 1 1 5

 3 3 3 3 3 3 2 2 2 2

 4 4 4 4 4 4 3 3 3

• Analysis: 12 page references, 10 page faults, 6 page replacements. Page faults

per number of frames = 10/4 = 2.5

LFU algorithm (page-based)

• procedure: replace the page which has been referenced least often

• For each page in the reference string, we need to keep a reference count. All

reference counts start at 0 and are incremented every time a page is referenced.

• example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page

referenced

1 2 3 4 1 2 5 1 2 3 4 5

26 | P a g e

Frames

_ = faulting

page n =

reference count

11 11 11 11 21 21 21 31 31 31 31 31

 12 12 12 12 22 22 22 32 32 32 32

 13 13 13 13 15 15 15 23 23 25

 14 14 14 14 14 14 14 24 24

• At the 7th page in the reference string, we need to select a page to be

victimized. Either 3 or 4 will do since they have the same reference count (1).

Let’s pick 3.

• Likewise at the 10th page reference; pages 4 and 5 have been referenced once

each. Let’s pick page 4 to victimize. Page 3 is brought in, and its reference

count (which was 1 before we paged it out a while ago) is updated to 2.

• Analysis: 12 page references, 7 page faults, 3 page replacements. Page faults

per number of frames = 7/4 = 1.75

LFU algorithm (frame-based)

• Procedure: replace the page in the frame which has been referenced least often

• Need to keep a reference count for each frame which is initialized to 1 when

the page is paged in, incremented every time the page in the frame is

referenced, and reset every time the page in the frame is replaced

• Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page

referenced

1 2 3 4 1 2 5 1 2 3 4 5

 11 11 11 11 21 21 21 31 31 31 31 31

27 | P a g e

Frames

_ = faulting

page n =

reference count

 12 12 12 12 22 22 22 32 32 32 32

 13 13 13 13 15 15 15 13 13 15

 14 14 14 14 14 14 14 24 24

• At the 7th reference, we victimize the page in the frame which has been

referenced least often -- in this case, pages 3 and 4 (contained within frames 3

and 4) are candidates, each with a reference count of 1. Let’s pick the page in

frame 3. Page 5 is paged in and frame 3’s reference count is reset to 1.

• At the 10th reference, we again have a page fault. Pages 5 and 4 (contained

within frames 3 and 4) are candidates, each with a count of 1. Let’s pick page

4. Page 3 is paged into frame 3, and frame 3’s reference count is reset to 1.

• Analysis: 12 page references, 7 page faults, 3 page replacements. Page faults

per number of frames = 7/4 = 1.75

LRU algorithm

• Replaces pages based on their most recent reference – replace the page with

the greatest backward distance in the reference string

• Example using 4 frames:

Reference # 1 2 3 4 5 6 7 8 9 10 11 12

Page

referenced

1 2 3 4 1 2 5 1 2 3 4 5

Frames

_ = faulting

page

1 1 1 1 1 1 1 1 1 1 1 5

 2 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 5 5 5 5 4 4

 4 4 4 4 4 4 3 3 3

28 | P a g e

• Analysis: 12 page references, 8 page faults, 4 page replacements. Page faults

per number of frames = 8/4 = 2

• One possible implementation (not necessarily the best):

o Every frame has a time field; every time a page is referenced, copy the

current time into its frame’s time field

o When a page needs to be replaced, look at the time stamps to find the

oldest

Thrashing

• If a process does not have “enough” pages, the page-fault rate is very high

– low CPU utilization

– OS thinks it needs increased multiprogramming

– adds another process to system

• Thrashing is when a process is busy swapping pages in and out

• Thrashing results in severe performance problems. Consider the following

scenario, which is based on the actual behaviour of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too

low, we increase the degree of multiprogramming by introducing a new

process to the system. A global page replacement algorithm is used; it

replaces pages with no regard to the process to which they belong. Now

suppose that a process enters a new phase in its execution and needs more

frames.

29 | P a g e

1 | P a g e

MODULE:IV

FILE SYSTEM

File concept:

A file is a collection of related information that is stored on secondary storage.

Information stored in files must be persistent i.e. not affected by power failures &

system reboots.

Files may be of free from such as text files or may be formatted rigidly. Files

represent both programs as well as data.

Part of the OS dealing with the files is known as file system. The important file

concepts include:

1. File attributes: A file has certain attributes which vary from one operating

system to another.

• Name: Every file has a name by which it is referred.

• Identifier: It is unique number that identifies the file within the file system.

• Type: This information is needed for those systems that support different

types of files.

• Location: It is a pointer to a device & to the location of the file on that

device

• Size: It is the current size of a file in bytes, words or blocks.

• Protection: It is the access control information that determines who can

read, write & execute a file.

• Time, date & user identification: It gives information about time of

creation or last modification & last use.

2. File operations: The operating system can provide system calls to create, read,

write, reposition, delete and truncate files.

2 | P a g e

• Creating files: Two steps are necessary to create a file. First, space must be

found for the file in the file system. Secondly, an entry must be made in the

directory for the new file.

• Reading a file: Data & read from the file at the current position. The

system must keep a read pointer to know the location in the file from where

the next read is to take place. Once the read has been taken place, the read

pointer is updated.

• Writing a file: Data are written to the file at the current position. The

system must keep a write pointer to know the location in the file where the

next write is to take place. The write pointer must be updated whenever a

write occurs.

• Repositioning within a file (seek): The directory is searched for the

appropriate entry & the current file position is set to a given value. After

repositioning data can be read from or written into that position.

• Deleting a file: To delete a file, we search the directory for the required

file. After deletion, the space is releasedso that it can be reused by other

files.

• Truncating a file: The user may erase the contents of a file but allows all

attributes to remain unchanged expect the file length which is rest to ‘O’ &

the space is released.

3. File types: The file name is spilt into 2 parts, Name & extension. Usually these

two parts areseparated by a period. The user & the OS can know the type of the

file from the extension itself.

4.

Listed below are some file types along with their extension:

File Type Extension

Executable File exe, bin, com

Object File obj, o (compiled)

Source Code file C, C++, Java, pas

3 | P a g e

Batch File bat, sh (commands to command the interpreter)

Text File txt, doc (textual data documents)

Archieve File

arc, zip, tar (related files grouped together into file

compressed for storage)

Multimedia File mpeg (Binary file containing audio or A/V

information)

5. File structure: Files can be structured in several ways. Three common possible

are:

• Byte sequence:The figure shows an unstructured sequence of bytes. The

OS doesn’t care about the content of file.

• It only sees the bytes. This structure provides maximum flexibility. Users

can write anything into their files & name them according to their

convenience. Both UNIX & windows use this approach.

byte

• Record sequence: In this structure, a file is a sequence of fixed length

records. Here the read operation returns one records & the write operation

overwrites or append or record.

Record

4 | P a g e

• Tree:In this organization, a file consists of a tree of records of varying

lengths. Each record consists of a key field. The tree is stored on the key

field to allow first searching for a particular key.

Access methods: Basically, access method is divided into 2 types:

• Sequential access: It is the simplest access method. Information in the file

is processed in order i.e. one record after another.

• A process can read all the data in a file in order starting from beginning but

can’t skip & read arbitrarily from any location.

• Sequential files can be rewound.

• It is convenient when storage medium was magnetic tape rather than disk.

• Direct access: A file is made up of fixed length-logical records that allow

programs to read & write records rapidly in no particular O order.

•

• This method can be used when disk are used for storing files.

• This method is used in many applications e.g. database systems. If an airline

customer wants to reserve a seat on a particular flight, the reservation

program must be able to access the record for that flight directly without

reading the records before it.

• In a direct access file, there is no restriction in the order of reading or

writing. For example, we can read block 14, then read block 50 & then write

block 7 etc.

• Direct access files are very useful for immediate access to large amount of

information.

5 | P a g e

Directory structure:

The file system of computers can be extensive. Some systems store thousands of

file on disk. To manage all these data, we need to organize them. The organization

is done in 2 steps. The file system is broken into partitions. Each partition contains

information about file within it.

Operation on a directory:

• Search for a file: We need to be able to search a directory for a particular

file.

• Create a file: New files are created & added to the directory.

• Delete a file: When a file is no longer needed, we may remove it from the

directory.

• List a directory: We should be able to list the files of the directory.

• Rename a file: The name of a file is changed when the contents of the file

changes.

• Traverse the file system: It is useful to be able to access every directory &

every file within a directory.

Structure of a directory:

The most common schemes for defining the structure of the directory are:

1. Single level directory: It is the simplest directory structure. All files are

present in the same directory. So it is easy to manage & understand.

Limitation: A single level directory is difficult to manage when the no. of files

increases or when there is more than one user. Since all files are in same

directory, they must have unique names. So, there is confusion of file names

between different users.

2. Two level directories: The solution to the name collision problem in single

level directory is to create a separate directory for each user. In a two level

directory structure, each user has its own user file directory. When a user logs

6 | P a g e

in, then master file directory is searched. It is indexed by user name & each

entry points to the UFD of that user.

Limitation: It solves name collision problem. But it isolates one user from

another. It is an advantage when users are completely independent.

But it is a disadvantage when the users need to access each other’s files & co-

operate among themselves on a particular task.

3. Tree structured directories: It is the most common directory structure. A two

level directory is a two level tree. So, the generalization is to extend the

directory structure to a tree of arbitrary height.

It allows users to create their own subdirectories & organize their files. Every

file in the system has a unique path name.

It is the path from the root through all the sub-directories to a specified file. A

directory is simply another file but it is treated in a special way.

One bit in each directory entry defines the entry as a file (O) or as sub-

directories.

Each user has a current directory. It contains most of the files that are of

current interest to the user.

Path names can be of two types: An absolute path name begins from the root

directory & follows the path down to the specified files. A relative path name

defines the path from the current directory.

E.g. If the current directory is root/spell/mail, then the relative path name is

prt/first & the absolute path name is root/ spell/ mail/ prt/ first.

Here users can access the files of other users also by specifying their path

names.

4. A cyclic graph directory:It is a generalization of tree structured directory

scheme. An a cyclic graph allows directories to have shared sub-directories &

files. A shared directory or file is not the same as two copies of a file.

5. Here a programmer can view the copy but the changes made in the file by one

programmer are not reflected in the other’s copy. But in a shared file, there is

7 | P a g e

only one actual file. So many changes made by a person would be immediately

visible to others.

This scheme is useful in a situation where several people are working as a team.

So, here all the files that are to be shared are put together in one directory.

Shared files and sub-directories can be implemented in several ways.

A common way used in UNIX systems is to create a new directory entry called

link. It is a pointer to another file or sub-directory.

The other approach is to duplicate all information in both sharing directories.

A cyclic graph structure is more flexible then a tree structure but it is also more

complex.

Limitation: Now a file may have multiple absolute path names. So, distinct file

names may refer to the same file. Another problem occurs during deletion of a

shared file. When a file is removed by any one user.

It may leave dangling pointer to the non existing file. One serious problem in a

cyclic graph structure is ensuring that there are no cycles. To avoid these

problems, some systems do not allow shared directories or files.

E.g. MS-DOS uses a tree structure rather than a cyclic to avoid the problems

associated with deletion.

One approach for deletion is to preserve the file until all references to it are

deleted. To implement this approach, we must have some mechanism for

determining the last reference to the file.

For this we have to keep a list of reference to a file. But due to the large size of

the no. of references. When the count is zero, the file can be deleted.

6. General graph directory: When links are added to an existing tree structured

directory, the tree structure is destroyed, resulting in a simple graph structure.

Linking is a technique that allows a file to appear in more than one directory.

The advantage is the simplicity of algorithm to transverse the graph &

determines when there are no more references to a file. But a similar

8 | P a g e

problem exists when we are trying to determine when a file can be deleted.

Here also a value zero in the reference count means that there are no more

references to the file or directory & the file can be deleted.

But when cycle exists, the reference count may be non-zero even when there

are no references to the directory or file.

This occurs due to the possibility of self referencing (cycle) in the structure. So,

here we have to use garbage collection scheme to determine when the last

references to a file has been deleted & the space can be reallocated.

It involves two steps:

• Transverse the entire file system & mark everything that can be accessed.

• Everything that isn’t marked is added to the list of free space.

But this process is extremely time consuming. It is only necessary due to

presence of cycles in the graph. So, a cyclic graph structure is easier to work

than this.

Case study

Linux File System

• Linux file system has a hierarchal file structure as it contains a root

directory and its subdirectories.

• All other directories can be accessed from the root directory.

• A partition usually has only one file system, but it may have more

than one file system.

• A file system is designed in a way so that it can manage and

provide space for non-volatile storage data.

• All file systems required a namespace that is a naming and

organizational methodology.

9 | P a g e

• The namespace defines the naming process, length of the

file name, or a subset of characters that can be used for the

file name.

• It also defines the logical structure of files on a memory

segment, such as the use of directories for organizing the

specific files.

• The data structure needs to support a hierarchical directory

structure; this structure is used to describe the available and

used disk space for a particular block.

• It also has the other details about the files such as file size,

date & time of creation, update, and last modified.

• Also, it stores advanced information about the section of

the disk, such as partitions and volumes.

• The advanced data and the structures that it represents

contain the information about the file system stored on the

drive;

• it is distinct and independent of the file system metadata.

• Linux file system contains two-part file system software

implementation architecture. Consider the below image:

10 | P a g e

• The file system requires an API (Application programming

interface) to access the function calls to interact with file

system components like files and directories.

• The first two parts of the given file system together called

a Linux virtual file system.

• It provides a single set of commands for the kernel and

developers to access the file system.

• This virtual file system requires the specific system driver to

give an interface to the file system.

11 | P a g e

Linux File System Features

• In Linux, the file system creates a tree structure. All the files

are arranged as a tree and its branches. The topmost

directory called the root (/) directory.

• All other directories in Linux can be accessed from the root

directory.

Some key features of Linux file system are as following:

o Specifying paths: Linux does not use the backslash (\) to

separate the components; it uses forward slash (/) as an

alternative.

o For example, as in Windows, the data may be stored in C:\ My

Documents\ Work, whereas, in Linux, it would be stored in

/home/ My Document/ Work.

o Partition, Directories, and Drives: Linux does not use drive

letters to organize the drive as Windows does.

o In Linux, we cannot tell whether we are addressing a partition,

a network device, or an "ordinary" directory and a Drive.

o Case Sensitivity: Linux file system is case sensitive. It

distinguishes between lowercase and uppercase file names.

Such as, there is a difference between test.txt and Test.txt in

Linux.

o This rule is also applied for directories and Linux commands.

https://www.javatpoint.com/linux-features

12 | P a g e

o File Extensions: In Linux, a file may have the extension '.txt,'

but it is not necessary that a file should have a file extension.

While working with Shell, it creates some problems for the

beginners to differentiate between files and directories.

o If we use the graphical file manager, it symbolizes the files and

folders.

o Hidden files: Linux distinguishes between standard files and

hidden files, mostly the configuration files are hidden in Linux

OS. Usually.

o we don't need to access or read the hidden files. The hidden

files in Linux are represented by a dot (.) before the file name

(e.g., .ignore).

Mass Storage Structure

• Systems designed to store enormous volumes of data are

referred to as mass storage devices.

• Massive storage devices are sometimes used

interchangeably with peripheral storage, which is the

management of bigger volumes of data that are larger than

the native storage capability of a computer or device.

• The basic idea of Mass Storage is to create a Data Backup

or Data Recovery System.

13 | P a g e

• Along with computer systems, definitions of mass storage

technologies and tactics have changed.

• The earliest and most basic mass storage techniques date

back to the era of main frame supercomputers, according

to experts.

• Today, mass storage may include several kinds of hard disks

or solid-state storage devices, as well as tape drives and

other physical data storage devices.

• The concepts of data backup and data recovery are

frequently linked to mass storage media.

The Mass Storage Structure Devices are:

1. Magnetic Disks

2. Solid State Disks

3. Magnetic Tapes

Magnetic Disks

• Now, we are going to know about all whereabouts of the

Magnetic Disk Mass Storage Structure Devices.

• In 1956, IBM created the first magnetic hard drive, a

substantial device with 50 21-inch (53-cm) platters.

14 | P a g e

• Despite being large, it could only hold 5 megabytes of

information.

• Since then, magnetic disks' storage capabilities have

multiplied dramatically while simultaneously shrinking in

size.

Basic Common Examples of Magnetic Disks are:

1. Floppy Disks

2. Hard Disks

3. Zip Disks

The Magnetic Disk basically looks like:

Structure and Working of Magnetic Disks:

The basic structure of Magnetic Disks is:

15 | P a g e

• A mechanical arm that travels across a revolving magnetic

surface, known as the platter, makes up the majority of a

magnetic disk.

• They come together to make a "comb." Both reading from

and writing to the disk are done using the mechanical arm.

A magnetization process is used to read and write data on

magnetic disks.

• One or more disk-shaped platters with magnetic material

covering them. Unlike "floppy" disks, which are composed

of more flexible plastic, hard disk platters are built of stiff

metal.

• There are two work areas on each plate. The very top and

bottom surfaces of a stack of platters were occasionally

avoided by older hard disk drives because they are more

prone to damage or even breaking in some cases.

• The time it takes for the requested sector to spin and enter

the read-write head is known as the rotational latency.

• This can be anything from 0 and 1 complete revolutions,

with an average of 12 revolutions.

• This is a physical action that often follows seek time as the

second-slowest step. (If a disk rotates at 7200 revolutions

per minute, the average rotational delay is 1/2 revolution /

16 | P a g e

120 revolutions per second, or just over 4 milliseconds, a

long time by computer standards.

Solid State Disks

• Old technologies are frequently employed in new ways as

economic conditions and technology evolve.

• The growing usage of solid state drives, or SSDs, is one

illustration of this.

• SSDs function as a tiny, quick hard disk using memory

technology.

• To maintain the information over power cycles, certain

implementations may employ either flash memory or

DRAM chips protected by a battery.

• SSDs do have certain drawbacks, too, including the fact that

they cost more than hard drives, are often smaller, and may

have shorter life spans.

• A boot drive is another version that has the OS and certain

application executables but no essential user data.

• In order to make laptops thinner, lighter, and quicker, SSDs

are also employed in them.

• The throughput of the bus may become a limiting problem

due to how much quicker SSDs are than conventional hard

17 | P a g e

drives, which leads to certain SSDs being linked directly to

the system PCI bus.

Magnetic Tapes

• Prior to the advent of hard disk drives, magnetic tapes were

frequently utilized for secondary storage; today, they are

mostly used for backups.

• It might take a while to get to a specific location on a

magnetic tape, but once reading or writing starts, access

rates are on par with disk drives.

Disk scheduling

Disk scheduling is done by operating systems to schedule I/O

requests arriving for the disk.

Disk scheduling is also known as I/O scheduling.

Disk scheduling is important because:

• Multiple I/O requests may arrive by different processes

and only one I/O request can be served at a time by

the disk controller.

• Thus other I/O requests need to wait in the waiting

queue and need to be scheduled.

18 | P a g e

• Two or more request may be far from each other so

can result in greater disk arm movement.

• Hard drives are one of the slowest parts of the

computer system and thus need to be accessed in an

efficient manner.

There are many Disk Scheduling Algorithms but before

discussing them let’s have a quick look at some of the

important terms:

• Seek Time:Seek time is the time taken to locate the

disk arm to a specified track where the data is to be

read or write.

• So the disk scheduling algorithm that gives minimum

average seek time is better.

• Rotational Latency: Rotational Latency is the time

taken by the desired sector of disk to rotate into a

position so that it can access the read/write heads.

• So the disk scheduling algorithm that gives minimum

rotational latency is better.

• Transfer Time: Transfer time is the time to transfer the

data. It depends on the rotating speed of the disk and

number of bytes to be transferred.

• Disk Access Time: Disk Access Time is:

Disk Access Time = Seek Time +

19 | P a g e

Rotational Latency +

Transfer Time

Disk Management

The operating system is responsible for various operations of disk

management.

Modern operating systems are constantly growing their range of

services and add-ons, and all operating systems implement four

essential operating system administration functions. These functions

are as follows:

1. Process Management

2. Memory Management

3. File and Disk Management

4. I/O System Management

20 | P a g e

• Most systems include secondary storage devices (magnetic

disks). It is a low-cost, non-volatile storage method for data and

programs.

• The user data and programs are stored on different storage

devices known as files.

• The OS is responsible for allocating space to files on secondary

storage devices as required.

• The OS requires tracking the position of the disk drive for each

section of every file on the disk.

• It may include tracking many files and file segments on a

physical disk drive in some circumstances.

• Furthermore, the OS must be able to identify each file and

conduct read and writes operations on it according to the

requirements.

• As a result, the OS is mainly responsible for setting the file

system, assuring the security and reliability of reading and

writing activities to secondary storage, and keeping access times

consistent.

Disk Management of the OS includes the various aspects, such as:

1. Disk Formatting

• A new magnetic disk is mainly a blank slate.

• It is platters of the magnetic recording material. Before a disk

may hold data, it must be partitioned into sectors that may be

21 | P a g e

read and written by the disk controller. It is known as physical

formatting and low-level formatting.

• Low-level formatting creates a unique data structure for

every sector on the drive.

• A data structure for a sector is made up of a header, a data

region, and a trailer.

• The disk controller uses the header and trailer to store

information like an error-correcting code (ECC) and a sector

number.

• The OS may treat every partition as it were a separate disk. For

example, one partition could contain a copy of the OS

executable code, while another could contain user files.

• The second stage after partitioning is logical formatting.

2. Boot Block

• When a system is turned on or restarted, it must execute an

initial program.

• The start program of the system is called the bootstrap program.

It starts the OS after initializing all components of the system.

• The bootstrap program works by looking for the OS kernel on

disk, loading it into memory, and jumping to an initial address

to start the OS execution.

• The bootstrap is usually kept in read-only memory on most

computer systems.

22 | P a g e

• It is useful since read-only memory does not require

initialization and is at a fixed location where the CPU may begin

executing whether powered on or reset.

• As a result, most computer systems include small bootstrap

loader software in the boot .

• The bootstrap program is stored in a partition and is referred to

as the boot block. A boot disk or system disk is a type of

disk that contains a boot partition.

3. Bad Blocks

• Disks are prone to failure due to their moving parts and

tight tolerances.

• When a disk drive fails, it must be replaced and the

contents transferred to the replacement disk using backup

media.

• For some time, one or more sectors become faulty. Most

disks also come from the company with bad blocks.

• These blocks are handled in various ways, depending on

the use of disk and controller.

23 | P a g e

Input output system

• One of the important jobs of an Operating System is to

manage various I/O devices including mouse, keyboards,

touch pad, disk drives, display adapters, USB devices, Bit-

mapped screen, LED, Analog-to-digital converter, On/off

switch, network connections, audio I/O, printers etc.

• An I/O system is required to take an application I/O request

and send it to the physical device, then take whatever

response comes back from the device and send it to the

application. I/O devices can be divided into two categories

−

.

• Any device connected to the computer is connected by a

plug and socket, and the socket is connected to a device

controller.

• Following is a model for connecting the CPU, memory,

controllers, and I/O devices where CPU and device

controllers all use a common bus for communication.

24 | P a g e

• The CPU must have a way to pass information to and from

an I/O device.

• There are three approaches available to communicate with

the CPU and Device.

• Special Instruction I/O

• Memory-mapped I/O

• Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for

controlling I/O devices.

These instructions typically allow data to be sent to an I/O

device or read from an I/O device.

25 | P a g e

Memory-mapped I/O

When using memory-mapped I/O, the same address space is

shared by memory and I/O devices.

The device is connected directly to certain main memory

locations so that I/O device can transfer block of data to/from

memory without going through CPU.

• While using memory mapped IO, OS allocates buffer in

memory and informs I/O device to use that buffer to send

data to the CPU. I/O device operates asynchronously with

CPU, interrupts CPU when finished.

• The advantage to this method is that every instruction

which can access memory can be used to manipulate an

I/O device.

26 | P a g e

Protection and security

• In computer systems, alot of user’s information is stored,

the objective of the operating system is to keep safe the

data of the user from the improper access to the system.

• Protection can be provided in number of ways. For a

single laptop system.

Types of Access :

• The files which have direct access of the any user have

the need of protection.

• The files which are not accessible to other users doesn’t

require any kind of protection.

• The mechanism of the protection provide the facility of

the controlled access by just limiting the types of access

to the file.

• Access can be given or not given to any user depends on

several factors, one of which is the type of access

required.

• Several different types of operations can be controlled:

• Read – Reading from a file.

• Write – Writing or rewriting the file.

• Execute – Loading the file and after loading the

execution process starts.

27 | P a g e

• Append – Writing the new information to the already

existing file, editing must be end at the end of the

existing file.

• Delete – Deleting the file which is of no use and using

its space for the another data.

• List – List the name and attributes of the file.

• There are many protection mechanism.

• each of them mechanism have different advantages and

disadvantages and must be appropriate for the intended

application.

Security

• File security is all about safeguarding your business-critical

information from prying eyes by implementing stringent access

control measures and flawless permission hygiene.

• Apart from enabling and monitoring security access controls,

decluttering data storage also plays an important role in securing

files.

• Regularly optimize file storage by purging old, stale, and other junk

files to focus on business-critical files.

• Tackle data security threats and storage inefficiencies with periodic

reviews and enhancements to your file security strategy.

28 | P a g e

Why is file security important?

• To protect sensitive data

Personally identifiable information (PII), electronic personal

health information (ePHI), confidential contracts, and other

business-critical data must be stored safely.

Careless transmission or use of such files could lead to data

privacy violations, resulting in heavy fines for the organization.

• To secure file sharing

Files transferred through unsecured channels can be misused by

insiders or hackers for malicious activities.

Comprehensive data leak prevention software can help prevent

unauthorized movement of business-critical data out of the

organization.

• To avoid data breaches

In 2019, personal details of 10.6 million MGM resort guests

were breached.

The impact of such a breach can be fatal to any organization. It is

not just the fines and legal consequences, but also the loss of

trust that can destroy a business.

https://www.manageengine.com/data-security/dlp/data-leak-prevention-software.html?source=what-is-file-security
https://www.zdnet.com/article/exclusive-details-of-10-6-million-of-mgm-hotel-guests-posted-on-a-hacking-forum/

29 | P a g e

1 | P a g e

MODULE:V

DISTRIBUTED SYSTEM

Distributed Operating System

• A distributed operating system (DOS) is an essential type of

operating system.

• Distributed systems use many central processors to serve multiple

real-time applications and users.

• As a result, data processing jobs are distributed between the

processors.

• It connects multiple computers via a single communication channel.

Furthermore, each of these systems has its own processor and

memory.

• Additionally, these CPUs communicate via high-speed buses or

telephone lines.

• Individual systems that communicate via a single channel are

regarded as a single entity.

• They're also known as loosely coupled systems.

2 | P a g e

• This operating system consists of numerous computers, nodes, and

sites joined together via LAN/WAN lines.

• It enables the distribution of full systems on a couple of center

processors, and it supports many real-time products and different

users.

• Distributed operating systems can share their computing resources

and I/O files while providing users with virtual machine abstraction.

Types of Distributed Operating System

There are various types of Distributed Operating systems. Some of them

are as follows:

1. Client-Server Systems

2. Peer-to-Peer Systems

https://www.javatpoint.com/os-tutorial
https://www.javatpoint.com/lan-vs-wan

3 | P a g e

3. Middleware

4. Three-tier

5. N-tier

Client-Server System

• This type of system requires the client to request a resource, after

which the server gives the requested resource.

• When a client connects to a server, the server may serve multiple

clients at the same time.

• Client-Server Systems are also referred to as "Tightly Coupled

Operating Systems".

• This system is primarily intended for multiprocessors and

homogenous multicomputer.

• Client-Server Systems function as a centralized server since they

approve all requests issued by client systems.

Server systems can be divided into two parts:

1. Computer Server System

This system allows the interface, and the client then sends its own requests

to be executed as an action.

After completing the activity, it sends a back response and transfers the

result to the client.

4 | P a g e

2. File Server System

It provides a file system interface for clients, allowing them to execute

actions like file creation, updating, deletion, and more.

Peer-to-Peer System

• The nodes play an important role in this system. The task is evenly

distributed among the nodes.

• Additionally, these nodes can share data and resources as needed.

Once again, they require a network to connect.

• The Peer-to-Peer System is known as a "Loosely Couple System".

• This concept is used in computer network applications since they

contain a large number of processors that do not share memory or

clocks.

• Each processor has its own local memory, and they interact with

one another via a variety of communication methods like telephone

lines or high-speed buses.

Middleware

• Middleware enables the interoperability of all applications running

on different operating systems.

• Those programs are capable of transferring all data to one other by

using these services.

Three-tier

• The information about the client is saved in the intermediate tier

rather than in the client, which simplifies development.

• This type of architecture is most commonly used in online

applications.

N-tier

• When a server or application has to transmit requests to other

enterprise services on the network, n-tier systems are used.

Features of Distributed Operating System

There are various features of the distributed operating system. Some of

them are as follows:

Openness

It means that the system's services are freely displayed through interfaces.

Furthermore, these interfaces only give the service syntax.

- For example, the type of function, its return type, parameters, and so on.

Interface Definition Languages are used to create these interfaces (IDL).

5 | P a g e

6 | P a g e

Scalability

It refers to the fact that the system's efficiency should not vary as new

nodes are added to the system.

Furthermore, the performance of a system with 100 nodes should be the

same as that of a system with 1000 nodes.

Resource Sharing

Its most essential feature is that it allows users to share resources.

They can also share resources in a secure and controlled manner.

Printers, files, data, storage, web pages, etc., are examples of shared

resources.

Flexibility

A DOS's flexibility is enhanced by modular qualities and delivers a more

advanced range of high-level services.

The kernel/ microkernel's quality and completeness simplify the

implementation of such services.

7 | P a g e

Transparency

It is the most important feature of the distributed operating system.

The primary purpose of a distributed operating system is to hide the fact

that resources are shared.

Transparency also implies that the user should be unaware that the

resources he is accessing are shared.

Furthermore, the system should be a separate independent unit for the

user.

Heterogeneity

The components of distributed systems may differ and vary in operating

systems, networks, programming languages, computer hardware, and

implementations by different developers.

Fault Tolerance

Fault tolerance is that process in which user may continue their work if the

software or hardware fails.

Examples of Distributed Operating System

There are various examples of the distributed operating system. Some of

them are as follows:

8 | P a g e

Solaris

It is designed for the SUN multiprocessor workstations

OSF/1

It's compatible with Unix and was designed by the Open Foundation

Software Company.

Micros

The MICROS operating system ensures a balanced data load while

allocating jobs to all nodes in the system.

DYNIX

It is developed for the Symmetry multiprocessor computers.

Locus

It may be accessed local and remote files at the same time without any

location hindrance.

Mach

It allows the multithreading and multitasking features.

Applications of Distributed Operating System

There are various applications of the distributed operating system. Some

of them are as follows:

9 | P a g e

Network Applications

DOS is used by many network applications, including the Web, peer-to-

peer networks, multiplayer web-based games, and virtual communities.

Telecommunication Networks

DOS is useful in phones and cellular networks. A DOS can be found in

networks like the Internet, wireless sensor networks, and routing

algorithms.

Parallel Computation

DOS is the basis of systematic computing, which includes cluster

computing and grid computing, and a variety of volunteer computing

projects.

Real-Time Process Control

The real-time process control system operates with a deadline, and such

examples include aircraft control systems.

Advantages and Disadvantages of Distributed

Operating System

There are various advantages and disadvantages of the distributed

operating system. Some of them are as follows:

10 | P a g e

Advantages

There are various advantages of the distributed operating system. Some

of them are as follow:

1. It may share all resources (CPU, disk, network interface, nodes,

computers, and so on) from one site to another, increasing data

availability across the entire system.

2. It reduces the probability of data corruption because all data is

replicated across all sites; if one site fails, the user can access data

from another operational site.

3. The entire system operates independently of one another, and as a

result, if one site crashes, the entire system does not halt.

4. It increases the speed of data exchange from one site to another

site.

5. It is an open system since it may be accessed from both local and

remote locations.

6. It helps in the reduction of data processing time.

7. Most distributed systems are made up of several nodes that interact

to make them fault-tolerant.

8. If a single machine fails, the system remains operational.

11 | P a g e

Disadvantages

There are various disadvantages of the distributed operating system.

Some of them are as follows:

1. The system must decide which jobs must be executed when they

must be executed, and where they must be executed.

2. A scheduler has limitations, which can lead to underutilized

hardware and unpredictable runtimes.

3. It is hard to implement adequate security in DOS since the nodes

and connections must be secured.

4. The database connected to a DOS is relatively complicated and hard

to manage in contrast to a single-user system.

5. The underlying software is extremely complex and is not understood

very well compared to other systems.

6. The more widely distributed a system is, the more communication

latency can be expected.

7. As a result, teams and developers must choose between availability,

consistency, and latency.

8. These systems aren't widely available because they're thought to be

too expensive.

12 | P a g e

Distributed File System

• In this article, you will learn about the distributed file system in the

operating system and its features, components, advantages, and

disadvantages.

What is Distributed File System?

• A distributed file system (DFS) is a file system that is distributed

on various file servers and locations.

• It permits programs to access and store isolated data in the same

method as in the local files.

• It also permits the user to access files from any system.

• It allows network users to share information and files in a regulated

and permitted manner.

• Although, the servers have complete control over the data and

provide users access control.

• DFS's primary goal is to enable users of physically distributed

systems to share resources and information through the Common

File System (CFS).

• It is a file system that runs as a part of the operating systems. Its

configuration is a set of workstations and mainframes that a LAN

connects.

• The process of creating a namespace in DFS is transparent to the

clients.

https://www.javatpoint.com/os-tutorial

13 | P a g e

DFS has two components in its services, and these are as follows:

1. Local Transparency

2. Redundancy

Local Transparency

It is achieved via the namespace component.

Redundancy

• It is achieved via a file replication component.

• In the case of failure or heavy load, these components work together

to increase data availability by allowing data from multiple places to

14 | P a g e

be logically combined under a single folder known as the "DFS

root".

• It is not required to use both DFS components simultaneously; the

namespace component can be used without the file replication

component, and the file replication component can be used

between servers without the namespace component.

Distributed File System Replication

Initial versions of DFS used Microsoft's File Replication Service (FRS),

enabling basic file replication among servers.

FRS detects new or altered files and distributes the most recent versions

of the full file to all servers.

Windows Server 2003 R2 developed the "DFS Replication" (DFSR).

It helps to enhance FRS by only copying the parts of files that have

changed and reducing network traffic with data compression.

It also gives users the ability to control network traffic on a configurable

schedule using flexible configuration options.

History of Distributed File System

The DFS's server component was firstly introduced as an additional

feature.

15 | P a g e

When it was incorporated into Windows NT 4.0 Server, it was

called "DFS 4.1". Later, it was declared a standard component of

all Windows 2000 Server editions.

Windows NT 4.0 and later versions of Windows have client-side support.

Linux kernels 2.6.14 and later include a DFS-compatible SMB client VFS

known as "cifs". DFS is available in versions Mac OS X 10.7 (Lion) and

later.

Working of Distributed File System

There are two methods of DFS in which they might be implemented, and

these are as follows:

1. Standalone DFS namespace

2. Domain-based DFS namespace

Standalone DFS namespace

It does not use Active Directory and only permits DFS roots that exist on

the local system.

A Standalone DFS may only be acquired on the systems that created it. It

offers no-fault liberation and may not be linked to other DFS.

Domain-based DFS namespace

16 | P a g e

It stores the DFS configuration in Active Directory and creating namespace

root at domainname>dfsroot> or FQDN>dfsroot>.

DFS namespace

SMB routes of the form are used in traditional file shares that are linked

to a single server.

Domain-based DFS file share paths are identified by utilizing the domain

name for the server's name throughout the form.

When users access such a share, either directly or through mapping a disk,

their computer connects to one of the accessible servers connected with

that share, based on rules defined by the network administrator.

For example, the default behavior is for users to access the nearest server

to them; however, this can be changed to prefer a certain server.

Applications of Distributed File System

There are several applications of the distributed file system. Some of them

are as follows:

Hadoop

Hadoop is a collection of open-source software services.

It is a software framework that uses the MapReduce programming style

to allow distributed storage and management of large amounts of data.

https://www.javatpoint.com/hadoop-tutorial

17 | P a g e

Hadoop is made up of a storage component known as Hadoop

Distributed File System (HDFS).

It is an operational component based on the MapReduce programming

model.

NFS (Network File System)

A client-server architecture enables a computer user to store, update, and

view files remotely.

It is one of various DFS standards for Network-Attached Storage.

SMB (Server Message Block)

IBM developed an SMB protocol to file sharing. It was developed to permit

systems to read and write files to a remote host across a LAN. The remote

host's directories may be accessed through SMB and are known

as "shares".

NetWare

It is an abandon computer network operating system that is developed by

Novell, Inc.

The IPX network protocol mainly used combined multitasking to execute

many services on a computer system.

CIFS (Common Internet File System)

18 | P a g e

CIFS is an accent of SMB. The CIFS protocol is a Microsoft-designed

implementation of the SIMB protocol.

Advantages and Disadvantages of Distributed File

System

There are various advantages and disadvantages of the distributed file

system. These are as follows:

Advantages

There are various advantages of the distributed file system. Some of the

advantages are as follows:

1. It allows the users to access and store the data.

2. It helps to improve the access time, network efficiency, and

availability of files.

3. It provides the transparency of data even if the server of disk files.

4. It permits the data to be shared remotely.

5. It helps to enhance the ability to change the amount of data and

exchange data.

Disadvantages

There are various disadvantages of the distributed file system. Some of

the disadvantages are as follows:

1. In a DFS, the database connection is complicated.

19 | P a g e

2. In a DFS, database handling is also more complex than in a single-

user system.

3. If all nodes try to transfer data simultaneously, there is a chance that

overloading will happen.

4. There is a possibility that messages and data would be missed in the

network while moving from one node to another.

Features

There are various features of the DFS. Some of them are as follows:

Transparency

There are mainly four types of transparency. These are as follows:

1. Structure Transparency

The client does not need to be aware of the number or location of file

servers and storage devices.

In structure transparency, multiple file servers must be given to

adaptability, dependability, and performance.

2. Naming Transparency

20 | P a g e

There should be no hint of the file's location in the file's name. When the

file is transferred form one node to other, the file name should not be

changed.

3. Access Transparency

Local and remote files must be accessible in the same method.

The file system must automatically locate the accessed file and deliver it

to the client.

4. Replication Transparency

When a file is copied across various nodes, the copies files and their

locations must be hidden from one node to the next.

Distributed syncharonization

• Distributed system is a collection of computers connected via the

high speed communication network.

• In the distributed system, the hardware and software

components communicate and coordinate their actions by

message passing.

21 | P a g e

• Each node in distributed systems can share their resources with

other nodes.

• So, there is need of proper allocation of resources to preserve

the state of resources and help coordinate between the several

processes.

• To resolve such conflicts, synchronization is used.

Synchronization in distributed systems is achieved via clocks.

• The physical clocks are used to adjust the time of nodes.Each

node in the system can share its local time with other nodes in

the system.

• The time is set based on UTC (Universal Time Coordination).

UTC is used as a reference time clock for the nodes in the

system.

• The clock synchronization can be achieved by 2 ways: External

and Internal Clock Synchronization.

1. External clock synchronization is the one in which an

external reference clock is present.

2. It is used as a reference and the nodes in the system can set

and adjust their time accordingly.

3. Internal clock synchronization is the one in which each node

shares its time with other nodes and all the nodes set and

adjust their times accordingly.

There are 2 types of clock synchronization algorithms: Centralized and

Distributed.

22 | P a g e

1. Centralized is the one in which a time server is used as a

reference.

The single time server propagates its time to the nodes and all

the nodes adjust the time accordingly.

It is dependent on single time server so if that node fails, the

whole system will lose synchronization.

Examples of centralized are- Berkeley Algorithm, Passive

Time Server, Active Time Server etc.

2. Distributed is the one in which there is no centralized time

server present.

23 | P a g e

Instead the nodes adjust their time by using their local time

and then, taking the average of the differences of time with

other nodes.

Distributed algorithms overcome the issue of centralized

algorithms like the scalability and single point failure.

Examples of Distributed algorithms are – Global Averaging

Algorithm, Localized Averaging Algorithm, NTP (Network time

protocol) etc.

Properties of Distributed algorithms to maintain Clock synchronization:

• Relevant and correct information will be scattered among multiple

machines.

• The processes make the decision only on local information.

• Failure of the single point in the system must be avoided.

• No common clock or the other precise global time exists.

• In the distributed systems, the time is ambiguous.

As the distributed systems has its own clocks.

The time among the clocks may also vary. So, it is possible to

synchronize all the clocks in distributed environment.

Types of Clock Synchronization

• Physical clock synchronization

• Logical clock synchronization

24 | P a g e

• Mutual exclusion synchronization

Physical Synchronization:

• In physical clock synchronization, All the computers will have their

own clocks.

• The physical clocks are needed to adjust the time of nodes. All the

nodes in the system can share their local time with all other nodes

in the system.

• The time will be set based on UTC (Universal Coordinate Timer).

• The time difference between the two computers is known as “Time

drift”. Clock drifts over the time is known as “Skew”.

Synchronization is necessary here.

Physical clocks: In physical synchronization, physical clocks are used

to time stamp an event on that computer.

If two events, E1 and E2, having different time stamps t1 and t2, the

order of the event occurring will be considered and not on the exact time

or the day at which they are occur.

Several methods are used to attempt the synchronization of the physical

clocks in Distributed synchronization:

1. UTC (Universal coordinate timer)

2. Christian’s algorithm

3. Berkely’s algorithm

25 | P a g e

Universal Coordinate Time (UTC)

• All the computers are generally synchronized to a standard time

called Universal Coordinate Time (UTC).

• UTC is the primary time standard by which the time and the clock

are regulated in the world.

• It is available via radio signals, telephone line and satellites (GPS).

• UTC is broadcasted via the satellites.

• Computer servers and online services with the UTC resources can

be synchronized by the satellite broadcast.

• Kept within 0.9 seconds of UTI.

UTO - Mean solar time on Greenwich meridian, Obtained from

astronomical observation.

UT1 - UTO corrected for polar motion.

UT2 - UT1 corrected for seasonal variations in earth’s rotation.

UTC - Civil time will be measured on an atomic scale.

Christian’s Algorithm:

• The simplest algorithm for setting time, it issues a remote

procedure call (RPC) to the time sever and obtains the time.

• The machine which send requests to the time server is “d/z”

seconds, where d is the maximum difference between the clock

and the UTC.

26 | P a g e

• The time server sends the reply with current UTC when receives

the request from the receiver.

